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Abstract

This paper reviews recently developed techniques of

adaptive nonlinear control using neural networks,

and demonstrates their application to two important

practical problems in orbital operations. An adaptive

neurocontroller is first developed for spacecraft atti-

tude control applications, and then the same design,

slightly modified, is shown to be effective in the con-

trol of free-floating orbital manipulators. The algo-

rithms discussed have guaranteed stability and con-
vergence properties, and thus constitute viable alter-

natives to existing control methodologies. Simulation

results are presented demonstrating the performance

of each algorithm with representative dynamic mod-
els.

1 Introduction

Neural networks offer the potential for significantly

extending the ability to control complex, poorly

modeled dynamic systems. Unfortunately, how-
ever, connectionist control efforts often overlook the

vast array of tools which have been developed in

nonlinear systems theory, including adaptive tech-

niques which are often much less complex than pro-

posed neurocontrol solutions. Moreover, the crucial

question of closed-loop stability is often ignored, or
treated in an ad hoc fashion in connectionist control

applications. Experienced control practitioners are

thus often justifiably skeptical about the utility of
proposed adaptive neurocontrollers.
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Fortunately, however, it is possible to incorpo-

rate neural networks into the existing framework of

nonlinear control and stability theory, and thereby

develop designs which both advance the state of

the art and possess guarantees of closed-loop sta-

bility and convergence. By uniting the new mul-

tivariable adaptive neurocontroller designs of (San-

ner&Slotine,1992; Sanner&Slotine,1995) with re-

cent work on adaptive and robust spacecraft at-

titude c6ntrollers (Bach&Paielli,1993; Dwyer&Sira-

Ramirez,1988; Egeland&Godhavn,1994; Slotine&Di

Benedetto, 1990) we review below the construction

of a stable neurocontroller for spacecraft attitude

maneuvers. Noting then that the dynamics of a
free-floating orbital robot have a structure mathe-

matically similar to rigid spacecraft rotations (Pa-

padopoulos,1990,1991), a similar adaptive neurocon-

trol methodology can be specified for these space

robotic systems. Significantly, free-floating robotic
systems cannot be treated in the context of "classic"

nonlinear adaptive systems theory, and thus adap-

tive neurocontrollers represent an important new en-

abling technology in space robotics.

Section 2 first discusses available nonlinear con-

trol techniques for spacecraft attitude maneuvers,
then demonstrates how adaptive neural networks can

be used to significantly extend these methods when

faced with relatively unstructured uncertainty about

nature of the torques influencing the motion of the
spacecraft. In Section 3, the same neurocontrol de-

sign, slightly modified, is shown to be effective in the

control of free-floating orbital manipulators. Each

section provides a complete specification of the struc-

ture of the control and adaptation laws, and pro-

vides simulation results which demonstrate the per-
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formanceof the controller on representative systems.

2 Attitude control

2.1 Problem Statement

The attitude dynamics of a rigid spacecraft subject

to torques applied by gas jet thrusters can be written

as (Hughes,1986)

HC_- S(H_)_ = r (1)
¢ = -s(_)c (2)

where H is the constant, symmetric, positive def-

inite spacecraft inertia matrix, C is the rotation

matrix which describes the attitude of the vehicle

with respect to an inertial frame, and u, is the an-

gular velocity of the spacecraft with respect to this

frame. The vector _" represents the torques applied

to the spacecraft by its attached attitude control

thrusters. In these equations, S provides the ma-

trix representation of the cross product operator, so

that a x b = S(a)b, and hence

0 --a3 a2 ]
S(a) = a3 0 -al •

--a2 al 0

Given measurements of the current vehicle attitude

and angular velocity, the goal of the attitude control

problem is to design a feedback control law for the

torques, r, which will ensure that the actual attitude

will asymptotically track a desired attitude, defined

by
Cd = --S(o;d)Cd, (3)

where Wd is a specified desired angular velocity, as-

sumed to be bounded, with a bounded derivative.

While the elements of the direction cosine ma-

trix can be used directly to develop suitable control

laws (Bach&Paielli,1993), more compact and com-

putationally efficient algorithms can be developed by

instead utilizing the quaternion representation of ve-
hicle attitude. In this formulation, vehicle attitude

is specified by a three element vector, e, and a scalar

parameter, _, collected together into the four ele-

ment quaternion, e, defined so that

Here a is the unit eigenaxis of the rotation from the

inertial to the body frame, i.e. a = Ca, and %0is the

magnitude of the rotation about this axis (Hughes,

1986). More explicitly, the elements of the quater-

nion completely determine the rotation matrix C

though the relation C = R(e), where

R(e) ----(r]2 -- eT e)l + 2e eT -- 2r]S(e).

Finally, in place of (2), the kinematics of the quater-

nion representing the vehicle attitude is given by

i_ = J(e)w (4)

where

J(e)=l[_?/+ST(e) ].

A similar equation defines the evolution of the de-

sired attitude, ed = J(ed)wd.

In order to develop a feedback control strategy for

this system, an appropriate measure of attitude error

must be synthesized. Using the actual and desired

rotation matrices, a natural measure for this purpose

can be defined as

67= cc_. (5)

With this definition, 67 is the matrix which trans-

forms a vector in the desired frame to one in the body

frame, and in particular, when C = Cd, 67 = I. The

dynamics of this error measure are easily computed

from the actual and desired attitude dynamics

C = c:c_ + cc_
= -s(_)67+ 67S(_d)

= -s(c_)67 (6)

where 6; = oJ - 67Wd.

Alternatively, using the quaternion representation

one obtains (_ = R(_) -- R(eedl), where the inverse

of a qnaternion is defined as

eli: ]
and quaternion multiplication is defined so that

e2el = U(el)e2 with

U(e)= [ _I + S(e) e ]--e T 77 "
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Using(4)and(6), thequaternionerrordynamicscan
becomputedas

e = J(6)5_. (7)

Note that the quaternion measure of attitude error,

6, admits the same interpretation as C'. In particu-

lar, 6 is the quaternion corresponding to the attitude

of the actual frame with respect to the desired ve-

hicle frame, and when the two frames are aligned

6T = [0,0,0,+1].

2.2 Conventional fixed and adaptive con-

troller designs

Several authors have exploited the structure of the

above equations to develop effective nonlinear con-

trol strategies which solve the tracking problem

posed (Bach&Paielli,1993; Egeland&Godhavn,1994;

Fossen,1992; Palelli&Bach,1993; Wen&Kreutz-

Delgado,1991; Wie&Barba,1985; Wie et a1.,1989).

Most recently, (Egeland&Godhavn,1994), building

upon the fundamental results of (Slotine&Li,1987;

Slotine&Di Benedetto,1990), have proposed a par-

ticularly compact algorithm which is especially

amenable to adaptive operation. The current sec-

tion reviews this new algorithm, in preparation for
the neurocontrol extensions considered in the follow-

ing section.

The algorithm of (Egeland&Godhavn,1994) uti-

lizes the composite error metric

where

(8)

= - (9)

and A > 0 is an arbitrary positive constant. Pro-

vided that the system inertia matrix, H, is known

precisely, the control law

T(t) = --KD(t)s(t) + "rnl(t), (10)

where KD (t) is a uniformly positive definite matrix
and

r "t = H_r - 5(H_)_r,

can then be shown to produce asymptotically con-

vergent closed-loop tracking of any desired attitude

trajectory, given by ed and Wd.

Under the more realistic assumption that there is

some initial uncertainty about the actual distribu-

tion of mass in the spacecraft, the above algorithm

can be modified to continuously tune the nonlin-

ear component v "l, thus adaptively compensating

for this uncertainty. Implementation of this modifi-

cation requires first
nents of the control

T nl __

where a contains the

craft inertia matrix.

factoring the nonlinear compo-
law:

H6;_ - S(H_)_

Y(w, Wr, Or)a (11)

6 unique elements of the space-

Using this factorization, but

perhaps lacking exact knowledge of the mass prop-

erties of the spacecraft, the nonlinear components

can be implemented using estimates, fi, of the true

mass properties, a

T = --KDS + Yfi. (12)

By then continuously tuning these estimates accord-

ing to the adaptation law

:a = --_r yT s, (13)

where F is a constant, symmetric positive defi-

nite matrix controlling the rate of adaptation, (Ege-

land&Godhavn,1994) show that the resulting closed-

loop system is stable, and again guarantees asymp-

totically perfect tracking of any smooth desired at-

titude trajectory.

Substantial prior knowledge about the rotational

dynamics must be utilized in order to separate the

nonlinear functions comprising the elements of Y,

from the mass parameters a; such a parameterization

is readily obtained for the idealized rigid body dy-

namics of a spacecraft. More complete models of the

rotational dynamics, however, may also include a va-

riety of environmental torques, arising from gravity

gradients, solar pressure, magnetic fields, and atmo-

spheric drag, to name the more significant sources,

which may not readily admit such a convenient pa-

rameterization of uncertainty. Indeed, in many cases

the actual physics underlying the structure of the

environmental torques may be too complex or too

poorly understood to provide an explicit, closed-

form description of their impact on the rotational

dynamics. Moreover, by "hardcoding" into Y a de-

scription of the expected environment, through the

choice of specific functions assumed to model these

torques, the system becomes excessively "rigid", in-

capable of responding appropriately to unexpectedly
different environments.
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In order to address this more general uncer-

tainty model, the next section reviews techniques

whereby the established functional approxima-

tion abilities of "neural" networks (Cybenko,1989;

Girosi&Poggio,1990; Hornik et a1.,1989) can be em-

ployed to provide the flexibility necessary to compen-

sate for uncertainty on the actual component func-

tions in appearing in the dynamic model.

2.3 Adaptive control and neural nets

Incorporating the above sources of environmental

torques, a more complete model of the rotational

dynamics might thus be

Hd_ - S(Hw)w + E(e, w) = r, . (14)

where the vector E now contains any torques ap-

plied to the vehicle by its environment. If the struc-

ture of these new torques were known explicitly, by

augmenting _.nt in (??) with the term E(e,w),

the resulting closed-loop system would again provide

asymptotically convergent tracking. However, un-
like the situation addressed by the algorithms of the

previous section, where there was uncertainty only

about the mass properties of the spacecraft, in this

section the functional form of the torques appear-

ing in the spacecraft dynamic model, both the rigid

body and the environmental torques, is assumed to

be completely unknown. The required r nl can hence

not be implemented, nor can the above adaptive

technique be used to learn the required "rnt, since by

assumption the prerequisite Ya parameterization is

unknown or impossible to obtain.

Proceeding similarly to (Sanner&Slotine,1995),

consider instead the following alternative represen-

tation of the nonlinear component of the required

control input:

'r"t = Hi'r- S(Hw)wr + E(e,w)

= M(x)v (15)

or, in component form,

= M j(x).j
j=l

• T Twhere V T [_.dr, wr, 1], and for notational conve-

nience, the components of the vehicle state have been

collected into a single vector x T = [eT, 0,)T]. Unlike

expansion (11), which decomposes *rnt into a matrix

of known functions, Y, multiplying a vector of un-

known constants a, this expansion decomposes r nl

into a 3 x 7 matrix of unknown functions M, multi-

plying a vector of 7 known signals v.

Without the ability to determine a Ya factoriza-

tion, an adaptive controller capable of producing the

required control input must instead learn each of the

21 unknown component functions, Mij(x), as op-

posed to the conventional model which must learn

only unknown constants, a. In the robotic applica-

tions considered in (Sanner&Slotine,1995), the con-

troller implements estimates of these functions using

adaptive neural networks. Indeed, since the compo-

nents of S(w)H are continuous functions of their ar-

guments, if the same also is true of the environmen-

tal forces, E, such networks can be used to uniformly

approximate to a chosen accuracy each component

function of M on any closed, bounded subset, A, of

the state space (Cybenko,1989; Girosi&Poggio,1990;

Hornik et al., 1989).

Thus, if the functions in M are sufficiently

smooth, a neural network approximation of the form

7

= (16)
j=l

can accurately approximate the required nonlinear

control input for appropriate values of th_ free net-

work parameters p. Here each Afid is an output of a

single hidden layer neural network of the form

N

MAx, p) =
k=l

and the neural approximation theorems ensure that,

for several different neural computation models, gk,

there exist values of the free parameters N, cij,} and

_k, which will approximate the continuous functions
in M to a chosen level of uniform accuracy on a

compact set A. In this control setting, defining d =

"rnl - v"_f, one thus has that for proper choice of N,

c/d,k and _k

7

Idi(x,v)l < _ a_jlv¢l
]=1

for any point x 6 A, where each 6i_ is the worst case

error of the network approximation to Mid on the
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set A. Provided that wd(t) and &d(t) are bounded,

as above, over this subset of the state space, the dis-

crepancy between the "neural" approximation and

the required nonlinear terms can thus be made ar-

bitrarily small by appropriate design of the network

employed (Sanner,1993; Sanner&Slotine,1995).

The network used in (16) has the 7 components

of the vehicle attitude state as its inputs, and 21

outputs "representing the approximations to each

Mi,j(x). While in principle, each of the indepen-

dent network parameters, N, _k, and c_j,k could
be learned, new theoretical results on construc-

tive neural approximation techniques provide a va-

riety of algorithms for effectively preselecting cer-

tain of the network parameters based upon estimates

of the smoothness of the functions being approxi-

mated. For example, for certain radial basis func-

tion network models (Broomhead&Lowe,1988; Pog-

gio&Girosi,1990), i.e. networks for which gk (x, _k) =

g(ak IIX--_k ]1) for a positive scaling parameter ak, the

parameters _k can be chosen to encode a uniform

mesh over the set A whose spacing is determined

by bounds on the significant frequency content of

the Fourier transform of the functions being approx-

imated (Sanner&Slotine,1992).

This analysis, and similar constructive techniques,

leaves only the specific outpu_t weights, c_j,k, to

be learned in order to accurately approximate the

particular functions of the assumed smoothness

class which appear in the matrix M. The follow-

ing section reviews .how the techniques of (San-

ner&Slotine,1995,Sanner&Slotine,1992) can be ap-

plied to the attitude control problem, specifying a

neurocontrol law and adaptation mechanism which

can stably learn these required output weights, pro-

ducing asymptotically convergent tracking of a de-

sired attitude. For a more detailed analysis of this

algorithm, including more general adaptation meth-

ods, refer to (Sanner&Slotine,1995).

2.4 Adaptive neurocontroller designs

Despite their potential, practical implementations of

neural computation models are at best capable of

providing only locally approximate representations

of the required control input. Use of such a de-

vice in place of explicit, prior knowledge about the

dynamic structure thus introduces the unmeasur-

able disturbance, d, into the closed-loop dynamic

model. Since d is generally nonvanishing, the adap-

tive system must be robust to this perturbation, lest

it cause the closed-loop system to become unstable

(Reed&Ioannou,1989;Sanner&Slotine,1992. :

To accommodate the required robust modifica-

tions, first define a set Au C T_7 containing the

trajectories the system must follow, a closed and

bounded "nominal operating range" A D Au, and

a smooth modulation function, re(t), which is unity

outside the set A, vanishes inside Au and otherwise

satisfies 0 < re(t) < 1. Notice that Ad can be cho-

sen as the cartesian product of the four dimensional

cube [-1, 1]4 and a three dimensional cube contain-

ing u,a(t) for all t, since by definition the quaternion

components only assume values in [-1, 1].

The proposed adaptive control law can then be
written as

"r(t) = -K D(t) s(t) + re(t) rs'(t) + (1 - m(t) );r_ (t)

(1;')
where the robust sliding controller component is

rlt(t) = -Ki(x, t) sgn(si(t)), whose gains are cho-

sen, similar to the designs in (Slotine&Li,1991;

Dwyer&Sira-Ramirez,1988), so that

7

K,(x,t) >_
j=l

These upper bounds, which can be quite" loose, are

assumed to be available a priori.

Assuming a network architecture has been selected
on the basis of the assumed smoothness of the func-

tions required in the control law, the adaptive neural

component of the controller is given by

7 N

= (18)
j=l k=l

Building from the results in (Sanner,1993; San-

ner&Slotine,1995), (Sanner&Vance,1994) show that

the control law (17), (18) coupled with the continu-

ous network learning rule

_ij,k (t) = P (--Tij,kSi(t) Vj (t) gk (x(t), _k), aij,k(t), Eij,k)

(19)

will produce a stable closed-loop system and asymp-

totic tracking of any desired attitude with an ulti-

mate accuracy limited only by the network approx-

imation capabilities, 6i,j. Here _j,k is an upper
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bound on the magnitude of each required output

weight, and the projection operator T ) is defined so

that P(x, y, z) = (1-m)x if -z < y < z, or ify < -z

and x > 0, or ify > z and x < 0; P(x,y,z) = 0 oth-

erwise.

This robust adaptation mechanism effectively re-

stricts the search for the required weights to a sub-

set of the 21N dimensional weight space, prevent-

ing the possibly unbounded "wandering" which can

be provoked by the disturbance d (Slotine&Li,1991;

Reed&Ioannou,1989). The robust controller compo-

nent, "rs_, is a supervisory mechanism which, if re-

quired, will stabilize the system in its initial learning

phases, smoothly returning the state to its nominal

operating range, on which the network is capable of

well approximating M.

2.5 Attitude control example

This section demonstrates the performance of the

proposed algorithm on a simulated attitude control

problem. The spacecraft inertia matrix used in the

simulation is

H

60 5 0 ]

5 78 10 J,0 10 38

and the desired attitude trajectory used to evaluate

the controller was specified by

Wd,1

W d,2 --_

-3(cos t + 3v_sin t)

3(5 cos t - Vf3 sin t)

Wd,3 = 8,-(t)
6d = J(ed) d

8v%(t)
3(V_cos t + sint)

where r(t) = 1 + .2cost. To implement the control

law (17), the tracking error metric s is computed

using (21) with A = 10, and the gains KD ----100I

are used for the linear feedback components.

Given the definition of the desired trajectory, the

nominal operating range, Ad, was chosen as Ad =

[--1, 1]4 x [-1.75, 1.75] 3 . The neural network, A t', em-

ployed in the control law uses radial gaussian nodes,

with gk(x, _k) = exp(--ak Ilx --_kll 2) to approximate
the functions in M on the set A = [-1.1, 1.1] 4 x

[-2, 2]3. For simplicity in this simulation, the net-

work was designed assuming that any applied envi-

ronmental forces are a function of w only. Under

these conditions, M is also a function of w only, and

the resulting network requires only the three inputs,

wi, and still 21 outputs, Af/d. Using the construc-

tive analysis techniques in (Sanner,1993) to initially

fix some of the network structure, each node uses

the same scaling parameter, ak = 6, and the gaus-

sian "centers" _k lie on a regular lattice of mesh size

A = 0.5 covering the set [-2.5, 2.5] 3. There are thus

a total of 1,331 gaussian nodes and 27,951 output

weights which the network must learn in order to

accurately approximate the elements of M.

Each output weight was initialized to zero, simu-

lating an initial total lack of knowledge about the

dynamics of the system. During the simulation,

these weights were continuously updated according

to the learning rule (19) together with the adap-

tation gains 7iZ,k = 2.5 for each i, j, k. The up-

per bounds _d,k = 200 were used to implement

the projection mechanism. The modulation func-

tion, re(t), and sliding controller gains were chosen

as in (Sanner&Slotine,1992; Sanner&Slotine,1995).

In this particular example, however, the supervisory

action of the sliding controller was never needed.

Figure 1 shows the performance of the algorithm

using this network, when the spacecraft attitude

evolves according to the ideal model (1). After

a transient period the attitude tracking errors, ei,

are reduced to a small neighborhood of zero, and

converges to near 1, indicating that the space-

craft is asymptotically tracking the desired attitude.

For comparison, Figure 2 illustrates the tracking

which would be obtained without use of the adap-

tive network, thus implementing a quaternion "PD"

type control strategy. The initial performance of

the network is virtually identical to the "PD" algo-

rithm, but the network performance rapidly becomes

markedly superior.

Figure 3 shows the performance of the algorithm,

using the same network and initialization, when

the spacecraft attitude instead evolves according to

(14), where the environmental torques are given by

136



square-law drag terms of the form

=
8lw_l 0 0

0 151o.,21 0
0 0 251¢,.,31

_°

Note that while this particular environmental torque

is not common in an orbital environment, it is con-

stitutes a significant influence in neutral buoyancy

simulation of orbital operations. The large pertur-

bations these representative hydrodynamic torques

introduce to the ideal rigid body dynamics provide

a significant additional dynamic component which

must be learned by the neural network. As Figure 3

shows, however, the ultimate tracking performance

obtained in the presence of these torques is virtually

identical to that obtained with the unperturbed dy-

namics, indicating that the network is successfully

compensating for the new dynamic components. By

comparison, if the adaptive contribution of the net-

work is omitted in the control law, the tracking per-

formance is significantly degraded, as demonstrated

in Figure 4.

3 Free-floating robot control

3.1 Problem statement and neurocontrol

solutions

When a robotic arm is mounted to the front of a

submersible or orbital vehicle, the motion of the arm

will couple to that of its mobile base. If the base is

allowed to rotate as the arm moves, that is, if no

torques are directly applied to the base allowing it

to resist the induced motion, the resulting robotic

system is termed a free-floating manipulator. Such

systems are especially attractive in space operations,

where worksite damage could ensue from use of a

propulsion system, and where avoiding the use of re-

action mass may make the mission potentially more

affordable by reducing launch costs and/or extend-

ing the useful life of the system.

A careful analysis of the coupled dynamics of a

manipulator arm mounted on a free-floating base

shows that the spacecraft attitude states may be

eliminated from the coupled equations, resulting in

a compact set of differential equations describing the

motion of arm joints. These equations have the same

the same general form as the equations of motion for

fixed-base manipulators (Papadopoulos,1990,1991),

i.e.

H*(q)cl + F*(q, Cl)Cl+ E*(q,_l) = 7"m. (20)

In this equation, q E 7_n is an n vector of manip-

ulator joint angles, H* is a symmetric, uniformly

positive definite inertia matrix, and F is a matrix ac-

counting for the centripetal and Coriolis forces aris-

ing from the arm motions. The vector "rm represents

the torque applied by motors at each manipulator

joint. Finally, E* again represents the effect of any
additional environmental forces.

In addition to the similarities to fixed-base ma-

nipulator dynamics, (20) is clearly also quite similar

to the spacecraft rotation models examined above.

Indeed, formally combining the spacecraft kine-

matic and dynamic equations produces a differential

equation structurally identical to (20) (Slotine&Di

Benedetto,1990). It is precisely this structural equiv-

alence which has inspired the recent adaptive at-

titude control algorithms (Egeland&Godhavn,1994;

Fossen,1992; Slotine&Di Benedetto,1990), includ-

ing the one reviewed above, from the fundamental

robotic result presented in (Slotine&Li,1987).

This suggests moreover that the adaptive neuro-

controller presented above can also be used to cause

the jc.,n_ angles of a free-floating manipulator to

asymptotically track any desired sequence of joint

angles, qd. By redefining the tracking error metric

s = + (21)

where now _ = q - qd, (Sanner&Vance,1994) show

that the preceding adaptive neurocontrol algorithm

indeed provides a stable closed-loop system and

asymptotic convergence of the tracking errors to a

small neighborhood of zero. In such applications,
the network inputs are the states of the robotic

arm, x T = [qT _lT], and the auxiliary signals are

v T = [£1T, _tT, 1], where Clr=cld - A_.
An additional design simplification can be ob-

tained in these robotic applications by noting that

the centripetal and Coriolis forces are quadratic in

velocity. If also E* is a function of q only, or can be

decomposed as E*(q,_l) = E_(q)f(£1), where f(cl)

represents a known _l dependence, the neural com-

ponent of the controller can be chosen as

N

_(t) = __, E ciJ,k(t)gk(q(t)'_k)wj(t)" (22)

j k=l
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The new auxiliary signals, wj, are respectively the

components of qr, [dldlr], and f(dl) (or simply 1 for

the latter component if E* is a function of q only).

The notation [Cldlr] is a shorthand for all possible

combinations qzqr,j for each i,j = 1,...,n. With
this use of the network in the controller, the adap-

tation mechanism is modified to be

_ij,k(t) ----_ (--_id,kSi (t) wj(t) gk (q(t), _k), Cij,k(t), _id,k) •

(23)

Despite the gross structural similarity of the dy-

namics (20) to both fixed-base manipulator dynam-

ics and the spacecraft rotatation models (14),(4),

there are important differences in the nature of the

functions which appear. In particular, the matrices

H* and F* in the free-floating manipulator dynam-

ics are significantly more complex than their coun-

terparts in spacecraft or fixed-base robot dynam-

ics. These matrices are so complex, in fact, that in

the face of uncertainty about the manipulator mass

properties, the parameterization _.nl = y_ is sim-

ply not possible even for the ideal (E* = 0) dynam-

ics of free-floating manipulator systems (Papadopou-

los,1990; Sanner&Vance,1994). This is in marked

contrast to spacecraft and fixed-base robot dynam-

ics, and provides a specific example of a situation in

which the adaptive function approximations imple-

mented by neural networks yield a new solution to

an otherwise intractable control problem.

3.2 Free-floating robot example

Figure 5 shows a 2 link manipulator attached to a

spacecraft, with both spacecraft and arm motion re-

stricted to a single plane. The 3 independent degrees

of freedom of the system are 0, the orientation of

the spacecraft with respect to an inertial reference

frame, ql and q2 which respectively describe the rel-

ative orientation of the first manipulator link to the

spacecraft and the second link to the first link.

For simplicity, the simulation assumes an ideal dy-

namic model with E* -- 0 in (20). Figure 6 gives
l_he mass, inertia, and relevant dimensions for the

system. The centers of mass of the spacecraft and

of each link are located centrally, as indicated in

Figure 5. To demonstrate the performance of the

proposed neurocontroller, the desired trajectory was

qd,l(t) = 1.2COS(0.8t) and qd,2(t) = 0.5cos(2.1t).

Given the definition of the trajectories the system

is required to follow, the set Ad was chosen ms

Ad = [-1.2,1.2] × [-0.5,0.5] x [-1, 1] × [1.05, 1.05],

and the nominal operating range, A was chosen as

A = [-1.4,1.4] × [-0.6,0.6] × [-1.1, 1.1] × [1.2, 1.2].

Using the simplified controller with (22) above, the

neural network employed in the control law has the 2

inputs qa(t) and q2(t), and 12 outputs. The network

used for the simulation again employs radial gaussian

nodes in the hidden layer, with each gaussian center

arranged on a regular lattice of mesh size A = 0.2

covering the set [-2, 2] × [-1.4, 1.4]. Each node again

used the same scale factor, here taken as crk ---- 13.

There are thus a total of 315 gaussian nodes and

3780 output weights which the network must learn in

order to accurately approximate the required control

input.

Each output weight was again initialized to zero,

and continuously updated according to the learn-

ing rule (23) together with the adaptation gains

7i,j,k = 2 for each i,j,k. The error metric s is

computed using (21) with _ = 10, and the gains

KD = 101 are used for the linear feedback con-

trol components. Finally, the modulation function

and sliding gains were again computed as in (San-

ner&Slotine,1995; Sanner&Vance,1994).
Figure 7 displays the performance of the neurocon-

troller tracking the specified joint space trajectory.

After a brief initial transient, the tracking errors in

each joint converge to a small neighborhood of zero.

Compare this with the performance of the "PD" con-

troller obtained by omitting the contribution of the

adaptive network from the control law. Although

initially (before any learning has occurred) the per-
formance of the neurocontroller resembles that of

the pure "PD" controller, the neurocontroller gradu-

ally reduces the tracking error, eventually achieving
worst case error a factor of 20 smaller than those

obtained with the PD controller.

4 Concluding remarks

High performance control of orbital robots and

spacecraft is an essential technology to ensure that

these systems will be truly useful in future orbital

operations. Most importantly, the accuracy and re-

liability of the algorithms employed must be assured,

even in the face of real-world uncertainty on the

physical properties of the system. In this paper we
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have demonstrated that, far from academic curiosi-

ties, adaptive "neural" networks provide unique solu-

tions for important practical problems in the control

of spacecraft and space robots, which otherwise are

difficult to solve with established adaptive control

techniques. The stability and convergence proper-

ties of the algorithms described provide the assur-

ances of reliability and effectiveness needed to make

such controllers viable alternatives to existing con-

trol algorithms.
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Figure 1: Attitude tracking performance using the

proposed adaptive neurocontroUer with the dynam-

ics (1). The top figure shows the norm of the the vec-

tor part of the error quaternion, II_ll2, while the bot-

tom figure shows the scalar part of the error quater-
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Figure 2: Attitude tracking performance with the

dynamics (1) omitting the adaptive contribution of

the neural network. The top figures shows the norm

of the the vector part of the error quaternion, I1_112

while the bottom figure shows the scalar part of the

error quaternion, _/.
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Figure 3: Attitude tracking performance using the

proposed adaptive neurocontroller with the dynam-

ics (14). The top figure shows the norm of the

the vector part of the error quaternion, [[_[[2 while

the bottom figure shows the scalar part of the error

quaternion, _.
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Figure 4: Attitude tracking performance with the

dynamics (14) omitting the adaptive contribution of

the neural network. The top figures shows the norm

of the the vector part of the error quaternion, II_ll2

while the bottom figure shows the scalar part of the

error quaternion, _.
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Figure 5: Diagram of the 3DOF simulation model
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Figure 7: Joint angle tracking performance for the

fzee-floating space robot using the proposed adaptive
neurocontroller.
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Figure 6: Physical parameters of the simulation
model
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Figure 8: Joint angle tracking performance without

use of the adaptive contribution of the neural net-
work.
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